Inverse MDS: Inferring Dissimilarity Structure from Multiple Item Arrangements
نویسندگان
چکیده
The pairwise dissimilarities of a set of items can be intuitively visualized by a 2D arrangement of the items, in which the distances reflect the dissimilarities. Such an arrangement can be obtained by multidimensional scaling (MDS). We propose a method for the inverse process: inferring the pairwise dissimilarities from multiple 2D arrangements of items. Perceptual dissimilarities are classically measured using pairwise dissimilarity judgments. However, alternative methods including free sorting and 2D arrangements have previously been proposed. The present proposal is novel (a) in that the dissimilarity matrix is estimated by "inverse MDS" based on multiple arrangements of item subsets, and (b) in that the subsets are designed by an adaptive algorithm that aims to provide optimal evidence for the dissimilarity estimates. The subject arranges the items (represented as icons on a computer screen) by means of mouse drag-and-drop operations. The multi-arrangement method can be construed as a generalization of simpler methods: It reduces to pairwise dissimilarity judgments if each arrangement contains only two items, and to free sorting if the items are categorically arranged into discrete piles. Multi-arrangement combines the advantages of these methods. It is efficient (because the subject communicates many dissimilarity judgments with each mouse drag), psychologically attractive (because dissimilarities are judged in context), and can characterize continuous high-dimensional dissimilarity structures. We present two procedures for estimating the dissimilarity matrix: a simple weighted-aligned-average of the partial dissimilarity matrices and a computationally intensive algorithm, which estimates the dissimilarity matrix by iteratively minimizing the error of MDS-predictions of the subject's arrangements. The Matlab code for interactive arrangement and dissimilarity estimation is available from the authors upon request.
منابع مشابه
Analysis of Distribution Valued Dissimilarity Data
We deal with methods for analyzing complex structured data, especially, distribution valued data. Nowadays, there are many requests to analyze various types of data including spatial data, time series data, functional data and symbolic data. The idea of symbolic data analysis proposed by Diday covers a large range of data structures. We focus on distribution valued dissimilarity data and multid...
متن کاملSensitivity analysis of the strain criterion for multidimensional scaling
Multidimensional scaling (MDS) is a collection of data analytic techniques for constructing configurations of points from dissimilarity information about interpoint distances. Classsical MDS assumes a fixed matrix of dissimilarities. However, in some applications, e.g., the problem of inferring 3-dimensional molecular structure from bounds on interatomic distances, the dissimilarities are free ...
متن کاملSteps Toward Large-scale Solar Image Data Analysis to Differentiate Solar Phenomena
We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures in order to determine which combinations will allow us to differentiate among the multiple so...
متن کاملComparison of Four Methods for Inferring Additive Trees from Incomplete Dissimilarity Matrices
The problem of inference of an additive tree from an incomplete dissimilarity matrix is known to be very delicate. As a solution to this problem, it has been suggested either to estimate the missing entries of a given partial dissimilarity matrix prior to tree reconstruction (De Soete, 1984 and Landry et al., 1997) or directly reconstruct an additive tree from incomplete data (Makarenkov and Le...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کامل